Lake Hawassa is a topographically closed lake in the Central Main Ethiopian Rift Valley. The water level of this lake has been reported to dramatically rise without falling back to the original level. The cause of this rise is not yet sufficiently investigated and subjected to this study. This study argues that the general variability in the lake level and its resultant rise has significant linkage to the temperature variability at the Pacific Ocean. The linkage between water level dynamics and climate variability was analyzed through the application of diverse statistical techniques. It comprises the Mann-Kendall trend analysis to test monotonic variations over time; sequential regime shift index (RSI) to detect significant shifts in the mean values of time-series records of lake level; and coherence analysis to investigate the linear relationship between ENSO index and records of local hydrology. Despite the multiple rises and falls, the results of the trend analysis revealed that the lake level experienced a significant resultant upward trend with Mann-Kendall τ values of 0.558, 0.629, and 0.545 (at α = 0.05 and p < 0.01%) for monthly maximum, average and minimum values respectively. The sequential regime shift evidenced that most of the significant shifts coincide with the occurrences of ENSO events. Generally, the lake level tends to be high during El Niño and low during La Niña episodes. The typical examples are the coincidence of extreme historical maximum lake level to the strongest El Niño event of the century that occurred in 1997/98 and the lowest lake level record in the year 1975 with a strong La Niña year. The coincidence of climate regime shift in the Pacific Ocean in 1976/77 with an equivalent regime shift in the lake level is an additional confirmation for the possible climate-hydrology linkage. The likely involvement of anthropogenic factors (at least in modifying the effect of climate) is justified by the interplay between the non-trending rainfall and potential evapotranspiration and trending streamflow. The coherence analysis between 492 pairs of monthly step datasets of 3.4ENSO index and lake level changes is also found to have a significant linear relationship over frequencies ranging from 0.13 to 0.14 cycles/month or 1.56 to 1.68 cycles/year. This corresponds to a dominant average periodicity (coincident cycle) of about 7.4 months which is thought to be related to the time span of the two rainy season in the locality.