Markus Niklaus, Claudia Kuenzer and Stefan Dech
Remote Sensing
5
3
1235-1257

Excerpt

The Leaf Area Index (LAI) is a key variable in many land surface and climate modeling studies. To date, a number of LAI datasets have been developed based on time series of medium resolution optical remote sensing observations. Global validation exercises show the high value of these datasets, but at the same time they point out shortcomings, particularly in the presence of persistent cloud coverage and dense vegetation. For regional modeling studies, the choice of an ideal LAI input dataset is not straightforward as global validation, and intercomparison studies do not necessarily allow conclusions on data quality at regional scale. This paper provides a comprehensive relative intercomparison of four freely available LAI products for a wide gradient of ecosystems in Africa. The region of investigation, West Africa, comprises typical African sub-humid to arid landscapes. The selected LAI time series are the Satellite Pour l’Observation de la Terre-VEGETATION (SPOT-VGT)-based Carbon Cycle and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) LAI, the SPOT-VGT-based Bio-geophysical Parameters (BioPar) LAI product GEOV1, the Moderate Resolution Imaging Spectroradiometer (MODIS) product MOD15A2, and the Meteosat-SEVIRI-based Satellite Application Facility on Land Surface Analysis (LSA-SAF) LAI. The comparative analyses focus on data gap occurrence, on the consistency of temporal LAI profiles, on their ability to adequately reproduce the phenological cycle and on the plausibility of LAI magnitudes for major land cover types in West Africa. A detailed quantitative validation of the LAI datasets, however, was not possible due to insufficient ground LAI measurements in the study region.